Compact lie groups and the stable homotopy of spheres

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new family in the stable homotopy groups of spheres

Let $p$ be a prime number greater than three. In this paper, we prove the existence of a new family of homotopy elements in the stable homotopy groups of spheres $pi_{ast}(S)$ which is represented by $h_nh_mtilde{beta}_{s+2}in {rm Ext}_A^{s+4, q[p^n+p^m+(s+2)p+(s+1)]+s}(mathbb{Z}_p,mathbb{Z}_p)$ up to nonzero scalar in the Adams spectral sequence, where $ngeq m+2>5$, $0leq sExt}_A^{s+2,q[(s+2)p...

متن کامل

a new family in the stable homotopy groups of spheres

let $p$ be a prime number greater than three. in this paper, we prove the existence of a new family of homotopy elements in the stable homotopy groups of spheres $pi_{ast}(s)$ which is represented by $h_nh_mtilde{beta}_{s+2}in {rm ext}_a^{s+4, q[p^n+p^m+(s+2)p+(s+1)]+s}(mathbb{z}_p,mathbb{z}_p)$ up to nonzero scalar in the adams spectral sequence, where $ngeq m+2>5$, $0leq sext}_a^{s+2,q[(s+2)p...

متن کامل

Detection of a nontrivial element in the stable homotopy groups of spheres

‎Let $p$ be a prime with $pgeq 7$ and $q=2(p-1)$‎. ‎In this paper‎ ‎we prove the existence of a nontrivial product of‎ ‎filtration $s+4$ in the stable homotopy groups of spheres‎. ‎This nontrivial‎ ‎product is shown to be represented up to a nonzero scalar by‎ ‎the product element $widetilde{gamma}_{s}b_{n-1}g_{0}in‎ ‎{Ext}_{mathcal{A}}^{s+4,(p^n+sp^2+sp+s)q+s-3}(mathbb{Z}/p,mathbb{Z}/p)$‎ ‎in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1974

ISSN: 0040-9383

DOI: 10.1016/0040-9383(74)90004-4